The pnCCD Principle
The pnCCDs are back illuminated, three-phase CCDs on a fully depleted silicon substrate. Their operation is based on the principle of sideward depletion and on transfer registers formed by pn-junctions. The outstanding characteristics include a homogeneous and thin photon entrance window leading to high quantum efficiency values between 100 eV and 20 keV and an excellent radiation hardness as well as high charge handling capacity.
The pnCCDs have an outstanding heritage in diverse fields of science. For example, two projects based on the pnCCDs which provided excellent data and a multitude of highly rated publications in journals with high impact factor like Nature, are the EPIC camera and the CAMP instrument.
-
The pnCCDs are the core element of the EPIC camera on board of the European X-ray observatory XMM-Newton [Soltau (1996), Strüder (2001)], which was launched in 1999 and is still operative. The excellent quality of the EPIC data led to several thousand publications.
-
A ground based application of the pnCCD is the CAMP instrument which was installed at the LCLS (Linac Coherent Light Source) at SLAC for several years (see e.g. [Strüder (2010), Chapman (2011), Seibert (2011), Loh (2012), Rudek (2012), Johansson (2012)]) and was afterwards installed at FLASH at DESY.